9.5: Cauchy Residue Theorem (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    6526
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    This is one of the major theorems in complex analysis and will allow us to make systematic our previous somewhat ad hoc approach to computing integrals on contours that surround singularities.

    Theorem \(\PageIndex{1}\) Cauchy's Residue Theorem

    Suppose \(f(z)\) is analytic in the region \(A\) except for a set of isolated singularities. Also suppose \(C\) is a simple closed curve in \(A\) that doesn’t go through any of the singularities of \(f\) and is oriented counterclockwise. Then

    \[\int_{C} f(z) \ dz = 2\pi i \sum \text{ residues of } f \text{ inside } C \nonumber \]

    Proof

    The proof is based of the following figures. They only show a curve with two singularities inside it, but the generalization to any number of singularities is straightforward. In what follows we are going to abuse language and say pole when we mean isolated singularity, i.e. a finite order pole or an essential singularity (‘infinite order pole’).

    9.5: Cauchy Residue Theorem (2)

    The left figure shows the curve \(C\) surrounding two poles \(z_1\) and \(z_2\) of \(f\). The right figure shows the same curve with some cuts and small circles added. It is chosen so that there are no poles of \(f\) inside it and so that the little circles around each of the poles are so small that there are no other poles inside them. The right hand curve is

    \[\tilde{C} = C_1 + C_2 - C_3 - C_2 + C_4 + C_5 - C_6 - C_5 \nonumber \]

    The left hand curve is \(C = C_1 + C_4\). Since there are no poles inside \(\tilde{C}\) we have, by Cauchy’s theorem,

    \[\int_{\tilde{C}} f(z) \ dz = \int_{C_1 + C_2 - C_3 - C_2 + C_4 + C_5 - C_6 - C_5} f(z) \ dz = 0 \nonumber \]

    Dropping \(C_2\) and \(C_5\), which are both added and subtracted, this becomes

    \[\int_{C_1 + C_4} f(z)\ dz = \int_{C_3 + C_6} f(z)\ dz \nonumber \]

    If

    \[f(z) = \ ... + \dfrac{b_2}{(z - z_1)^2} + \dfrac{b_1}{z - z_1} + a_0 + a_1 (z - z_1) + \ ... \nonumber \]

    is the Laurent expansion of \(f\) around \(z_1\) then

    \[\begin{array} {rcl} {\int_{C_3} f(z)\ dz} & = & {\int_{C_3}\ ... + \dfrac{b_2}{(z - z_1)^2} + \dfrac{b_1}{z - z_1} + a_0 + a_1 (z - z_1) + \ ... dz} \\ {} & = & {2\pi i b_1} \\ {} & = & {2\pi i \text{Res} (f, z_1)} \end{array} \nonumber \]

    Likewise

    \[\int_{C_6} f(z)\ dz = 2\pi i \text{Res} (f, z_2). \nonumber \]

    Using these residues and the fact that \(C = C_1 + C_4\), Equation 9.5.4 becomes

    \[\int_C f(z)\ dz = 2\pi i [\text{Res} (f, z_1) + \text{Res} (f, z_2)]. \nonumber \]

    That proves the residue theorem for the case of two poles. As we said, generalizing to any number of poles is straightforward.

    Example \(\PageIndex{1}\)

    Let

    \[f(z) = \dfrac{1}{z(z^2 + 1)}. \nonumber \]

    Compute \(\int f(z)\ dz\) over each of the contours \(C_1, C_2, C_3, C_4\) shown.

    9.5: Cauchy Residue Theorem (3)
    Solution

    The poles of \(f(z)\) are at \(z = 0, \pm i\). Using the residue theorem we just need to compute the residues of each of these poles.

    At \(z = 0\):

    \[g(z) = zf(z) = \dfrac{1}{z^2 + 1} \nonumber \]

    is analytic at 0 so the pole is simple and

    \[\text{Res} (f, 0) = g(0) = 1. \nonumber \]

    At \(z = i\):

    \[g(z) = (z - i) f(z) = \dfrac{1}{z(z + i)} \nonumber \]

    is analytic at \(i\) so the pole is simple and

    \[\text{Res} (f, i) = g(i) = -1/2. \nonumber \]

    At \(z = -i\):

    \[g(z) = (z + i) f(z) = \dfrac{1}{z (z - i)} \nonumber \]

    is analytic at \(-i\) so the pole is simple and

    \[\text{Res} (f, -i) = g(-i) = -1/2. \nonumber \]

    Using the residue theorem we have

    \[\begin{array} {l} {\int_{C_1} f(z)\ dz = 0 \text{ (since } f \text{ is analytic inside } C_1)} \\ {\int_{C_2} f(z)\ dz = 2 \pi i \text{Res} (f, i) = -\pi i} \\ {\int_{C_3} f(z)\ dz = 2\pi i [\text{Res}(f, i) + \text{Res} (f, 0)] = \pi i} \\ {\int_{C_4} f(z)\ dz = 2\pi i [\text{Res} (f, i) + \text{Res} (f, 0) + \text{Res} (f, -i)] = 0.} \end{array} \nonumber \]

    Example \(\PageIndex{2}\)

    Compute

    \[\int_{|z| = 2} \dfrac{5z - 2}{z (z - 1)}\ dz. \nonumber \]

    Solution

    Let

    \[f(z) = \dfrac{5z - 2}{z(z - 1)}. \nonumber \]

    The poles of \(f\) are at \(z = 0, 1\) and the contour encloses them both.

    9.5: Cauchy Residue Theorem (4)

    At \(z = 0\):

    \[g(z) = zf(z) = \dfrac{5z - 2}{(z - 1)} \nonumber \]

    is analytic at 0 so the pole is simple and

    \[\text{Res} (f, 0) = g(0) = 2. \nonumber \]

    At \(z = 1\):

    \[g(z) = (z - 1) f(z) = \dfrac{5z - 2}{z} \nonumber \]

    is analytic at 1 so the pole is simple and

    \[\text{Res} (f, 1) = g(1) = 3. \nonumber \]

    Finally

    \[\int_{C} \dfrac{5z - 2}{z(z - 1)} \ dz = 2\pi i [\text{Res} (f, 0) + \text{Res} (f, 1)] = 10 \pi i. \nonumber \]

    Example \(\PageIndex{3}\)

    Compute

    \[\int_{|z| = 1} z^2 \sin (1/z)\ dz. \nonumber \]

    Solution

    Let

    \[f(z) = z^2 \sin (1/z). \nonumber \]

    \(f\) has an isolated singularity at \(z = 0\). Using the Taylor series for \(\sin (w)\) we get

    \[z^2 \sin (1/z) = z^2 \left(\dfrac{1}{z} - \dfrac{1}{3! z^3} + \dfrac{1}{5! z^5} - \ ... \right) = z - \dfrac{1/6}{z} + \ ... \nonumber \]

    So, \(\text{Res} (f, 0) = b_1 = -1/6\). Thus the residue theorem gives

    \[\int_{|z| = 1} z^2 \sin (1/z)\ dz = 2\pi i \text{Res} (f, 0) = - \dfrac{i \pi}{3}. \nonumber \]

    Example \(\PageIndex{4}\)

    Compute

    \[\int_C \dfrac{dz}{z(z - 2)^4} \ dz, \nonumber \]

    where, \(C : |z - 2| = 1\).

    9.5: Cauchy Residue Theorem (5)
    Solution

    Let

    \[f(z) = \dfrac{1}{z(z - 2)^4}. \nonumber \]

    The singularity at \(z = 0\) is outside the contour of integration so it doesn’t contribute to the integral. To use the residue theorem we need to find the residue of \(f\) at \(z = 2\). There are a number of ways to do this. Here’s one:

    \[\begin{array} {rcl} {\dfrac{1}{z}} & = & {\dfrac{1}{2 + (z - 2)}} \\ {} & = & {\dfrac{1}{2} \cdot \dfrac{1}{1 + (z - 2)/2}} \\ {} & = & {\dfrac{1}{2} (1 - \dfrac{z - 2}{2} + \dfrac{(z - 2)^2}{4} - \dfrac{(z - 2)^3}{8} + \ ..)} \end{array} \nonumber \]

    This is valid on \(0 < |z - 2| < 2\). So,

    \[f(z) = \dfrac{1}{(z - 4)^4} \cdot \dfrac{1}{z} = \dfrac{1}{2(z - 2)^4} - \dfrac{1}{4(z - 2)^3} + \dfrac{1}{8(z - 2)^2} - \dfrac{1}{16(z - 2)} + \ ... \nonumber \]

    Thus, \(\text{Res} (f, 2) = -1/16\) and

    \[\int_C f(z)\ dz = 2\pi i \text{Res} (f, 2) = - \dfrac{\pi i}{8}. \nonumber \]

    Example \(\PageIndex{5}\)

    Compute

    \[\int_C \dfrac{1}{\sin (z)} \ dz \nonumber \]

    over the contour \(C\) shown.

    9.5: Cauchy Residue Theorem (6)
    Solution

    Let

    \[f(z) = 1/ \sin (z). \nonumber \]

    There are 3 poles of \(f\) inside \(C\) at \(0, \pi\) and \(2\pi\). We can find the residues by taking the limit of \((z - z_0) f(z)\). Each of the limits is computed using L’Hospital’s rule. (This is valid, since the rule is just a statement about power series. We could also have used Property 5 from the section on residues of simple poles above.)

    At \(z = 0\):

    \[\lim_{z \to 0} \dfrac{z}{\sin (z)} = \lim_{z \to 0} \dfrac{1}{\cos (z)} = 1. \nonumber \]

    Since the limit exists, \(z = 0\) is a simple pole and

    \[\text{Res} (f, 0) = 1. \nonumber \]

    At \(z = \pi\):

    \[\lim_{z \to \pi} \dfrac{z - \pi}{\sin (z)} = \lim_{z \to \pi} \dfrac{1}{\cos (z)} = -1. \nonumber \]

    Since the limit exists, \(z = \pi\) is a simple pole and

    \[\text{Res} (f, \pi) = -1. \nonumber \]

    At \(z = 2 \pi\): The same argument shows

    \[\text{Res} (f, 2\pi) = 1. \nonumber \]

    Now, by the residue theorem

    \[\int_C f(z)\ dz = 2\pi i [\text{Res} (f, 0) + \text{Res} (f, \pi) + \text{Res} (f, 2\pi)] = 2\pi i. \nonumber \]

    9.5: Cauchy Residue Theorem (2024)
    Top Articles
    D Minor Key Signature: Understanding Its Characteristics and Usage
    Sloppy Joes
    Funny Roblox Id Codes 2023
    Golden Abyss - Chapter 5 - Lunar_Angel
    Www.paystubportal.com/7-11 Login
    Joi Databas
    DPhil Research - List of thesis titles
    Shs Games 1V1 Lol
    Evil Dead Rise Showtimes Near Massena Movieplex
    Steamy Afternoon With Handsome Fernando
    Which aspects are important in sales |#1 Prospection
    Detroit Lions 50 50
    18443168434
    Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
    Grace Caroline Deepfake
    978-0137606801
    Nwi Arrests Lake County
    Immortal Ink Waxahachie
    Craigslist Free Stuff Santa Cruz
    Mflwer
    Spergo Net Worth 2022
    Costco Gas Foster City
    Obsidian Guard's Cutlass
    Marvon McCray Update: Did He Pass Away Or Is He Still Alive?
    Mccain Agportal
    Amih Stocktwits
    Fort Mccoy Fire Map
    Uta Kinesiology Advising
    Kcwi Tv Schedule
    What Time Does Walmart Auto Center Open
    Nesb Routing Number
    Olivia Maeday
    Random Bibleizer
    10 Best Places to Go and Things to Know for a Trip to the Hickory M...
    Black Lion Backpack And Glider Voucher
    Gopher Carts Pensacola Beach
    Duke University Transcript Request
    Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
    Jambus - Definition, Beispiele, Merkmale, Wirkung
    Netherforged Lavaproof Boots
    Ark Unlock All Skins Command
    Craigslist Red Wing Mn
    D3 Boards
    Jail View Sumter
    Nancy Pazelt Obituary
    Birmingham City Schools Clever Login
    Thotsbook Com
    Funkin' on the Heights
    Vci Classified Paducah
    Www Pig11 Net
    Ty Glass Sentenced
    Latest Posts
    Article information

    Author: Prof. An Powlowski

    Last Updated:

    Views: 5746

    Rating: 4.3 / 5 (44 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Prof. An Powlowski

    Birthday: 1992-09-29

    Address: Apt. 994 8891 Orval Hill, Brittnyburgh, AZ 41023-0398

    Phone: +26417467956738

    Job: District Marketing Strategist

    Hobby: Embroidery, Bodybuilding, Motor sports, Amateur radio, Wood carving, Whittling, Air sports

    Introduction: My name is Prof. An Powlowski, I am a charming, helpful, attractive, good, graceful, thoughtful, vast person who loves writing and wants to share my knowledge and understanding with you.